
Name(s): Challenge: Artificial Neural Networks in Even More Depth
Machine Learning is Easy

TA: Anish Lakkapragada

Happy Neural Network November! In this challenge, you will see more of the math behind a neural
network, especially in the more practical cases of having multiple features, explore why they are so pow-
erful, and also learn about a less-famous neural network, the autoencoder. There’s two simple problems
along the way.

1 Neural Networks: Beyond Univariate Cases

1.1 Univariate Case

Here we explore the univariate case (one variable); we want to predict one variable from only one variable.
Let’s define the dataset and labels. We have a (for now) univariate dataset X and its corresponding

labels y and an (artificial) neural network with parameters θ in its prediction function f(xi, θ) (similar to
linear regression.) We similarly have some objective function J which we are trying to minimize.

Neural networks are essentially just compositions of linear neural networks, with some crucial activa-
tion functions in the middle. This means that in a neural network you first have inputs going through
a linear regression, and then these subsequent outputs become inputs for the next linear regression (or
the next layer.) However, in between passing the output as input the output goes through an activation
function σ(x) which is crucial to adding nonlinearity to the function as discussed before.

In the univariate case, we can represent the linear regressions in neural networks through vectors. The
input data can just be a vector (list of numbers) x⃗ and the labels similarly are a vector y⃗. For a linear
regression in the univariate case, the optimal parameters m and b in the function y⃗ = mx⃗ + b are both
scalars. We’ll see how this changes in the multivariate case.

1.2 Multivariate Case

In the multivariate case we are using multiple variables to predict a single variable. In this case, our
dataset would no longer would be represented as a vector; instead it would be a matrix X with N rows
(N is the number of samples) with k features.

To represent linear regression in a multivariate case, the parameter m as discussed above would no
longer be a scalar but a vector with a size of k. Let’s say in our example we have 3 features, or input
variables (k = 3). A visual show of how this works to create the desired prediction function for each
sample is shown in Equation 1.

x
(1)
1 x

(1)
2 x

(1)
3

x
(2)
1 x

(2)
2 x

(2)
3

· · · · · · · · ·
x
(N)
1 x

(N)
2 x

(N)
3


m1

m2

m3

+ b =


m1x

(1)
1 +m2x

(1)
2 +m3x

(1)
3 + b

m1x
(2)
1 +m2x

(2)
2 +m3x

(2)
3 + b

...

m1x
(N)
1 +m2x

(N)
2 +m3x

(N)
3 + b

 (1)

X× m⃗+ b = Ŷ

What’s depicted above is basically the crux of most machine learning. When you have multiple
variables, you represent the input data as a matrix, the weights as a matrix/vector (more on this), and
the outputs are a vector/matrix. Note that the outputs for Ŷ are exactly what we want - they are a
weighted sum for each of the k input variables x1 . . . xk using the coefficients m1 . . .mk plus the bias.

1



From here, we’ll work our way up to neural networks. One difference between neural networks and
linear regressions is that when neural networks take in multiple variables (or only one) as input, they
typically output multiple values (more than the prediction vector shown in Equation 1). This can easily
be done by adding another set of coefficients in a second column of the weight M (capital because its
now a matrix), which will lead to two columns in the final prediction - or two sets of values. Note that
you can start with univariate data and end up with two sets of values (two sets of outputs) or start with
multivariate data and go to a univariate predictions (as shown before.) Also note that that the bias b
will now have two values and be a vector (added to each row) instead of a scalar if there are to be two
columns / output lists.

Problem 1 : Let’s say we have data containing N samples each with k1 features. If, after a linear
regression, we want to have k2 outputs for each sample, what shape (how many rows and cols) is the
input, weight, bias, and output terms?

Input (X):
Weight (M):
Bias (⃗b):
Output(Ŷ):

Storing data like this also matters computationally. Lots of hardware, especially GPUs, can do matrix
multiplications extremely fast and so having our data represented in ways where it can be vector ized or on
matrices in our computers is extremely useful for efficiency. This is notably because matrix multiplication
can easily be parallelized.

1.3 The Easy Part: Activation Functions

The final part before putting it altogether are activation functions. These are what allows nonlinearity
in neural neural networks, as discussed before. Some popular functions are the sigmoid/logistic function,
Tanh, ReLU, and softmax.

However, when we apply gradient descent to optimize each parameter in neural networks (also known
as backpropagation), we have to use the chain rule for each layer (to be shown soon) and activation
function. Thus, we want the gradients/derivatives to not be extremely small (e.g. near 0). When
activation functions have this issue where their slope goes close enough to 0, they lead to vanishing
gradients where the gradients disappear as these activation function derivatives drastically reduce the
gradients when they pass through the enter neura network (backward.) This happens when there are
asymptotes in the activation function. Ideally the activation functions are enough to add a shape more
complex than a line but do not interfere with the other gradients (gradients should basically be 1 for the
most part.)

Problem 2 : Do some online research on the shapes of the 3 activation functions1 above. Which
activation function do you think will be the most successful and used the most and why?

1Softmax only makes sense to use in the last layer of a classification neural network. Thus ignore it.

2



1.4 Putting it Altogether

By now, it’s clear neural networks are nothing more than glorified regressions feeding into subsequent
regressions with activation functions in the middle. Oftentimes these individual regressions and activation
functions are referred to as layers in a neural network. A diagram which shows this is given below.

It’s important to note that this is a bad diagram. It does not show the activation functions nor the
biases. Regardless, your going to see this anyways so it’s worth knowing that in this diagram the three
circles in the input layer represent the three variables for a single input, and the connections represent
the weighted sum (before activation function) for each output node. The number of nodes / circles in
each layer represents the amount of variables/outputs in that layer (for a single sample.) This diagram is
pretty bad as you can clearly see.

1.5 Backpropagation: They Needed to Make Something Sound Fancy, again

Backpropagation is just gradient descent applied to neural networks. You simply apply the same gradient
descent equation to all the parameters (all the biases + weights in each layer) with the same learning rate
parameters. Also, you can forget about closed-form solutions from here as expanding the entire neural
network composite function (with all the linear regressions and intermediate activations) is to complex to
find an extrema for.

2 Why Neural Networks Became Famous: Universal Approximation
Theorem

So far you may be wondering why neural networks even matter. More specifically, what complexity does
having a second layer, as compared to just one layer (which would be a regression), add.

It turns out that the Universal Approximation Theorem (UAT) proves (with math that’s too advanced
for me) that a neural network with two layers (input layer + one hidden layer as shown above) can
approximate any function (given that the layers have enough units.) This makes neural networks extremely
powerful as any function or shape (linear, quadratic, or even weirder) can be approximated by neural
networks. Note that this is on the training data, not the testing data.

3 Autoencoders: Neural Networks Beyond Prediction

Oftentimes we want to compress data. Meaning that if that our input data contains 1000 variables, we
may want to be able to compress it in a way where we hold the same information in less variables. That
is the idea of dimensionality reduction - taking data points (vectors) in a higher-dimensional space and
compressing them down to a lower-dimensional space. Successful dimensionality reduction would be when
points that were (relatively) far from each other in their original dimensions are still (relatively) far from
each other in their lower-dimensional form. Failed dimensionality reduction would be when points in their

3



lower-dimensional form are all extremely close or just form a line regardless of their distances or shape in
their original higher-dimensional form.

Figure 1: A visual of an autoencoder, where the goal is to reconstruct the input as precisely as possible
in a way that compresses and decompresses information.

The above neural network is a special type of neural network known as an autoencoder. It’s goal is to
take in it’s input, compress it down in the encoder layers to a smaller amount of nodes in the middle (a.k.a.
bottleneck) layer and then use that information in the middle to recreate the input in the decoder layers.
This means that both the input and labels are the same. This forces the representation of the data in
the bottleneck layer to hold as much useful information as possible required to understand/differentiate
a sample from others. The key principle is that similar inputs/images/data should be closer in their
numerical representation.

What this means is that we can just feed data with a high amount of features into our autoencoder
neural network and get the data in a reduced amount of dimensions by taking whatever values are held
in the bottleneck layer. One way to explore this deeper is to train an autoencoder on image inputs, and
then see what happens to the output image as you adjust the values in the bottleneck layer. I actually
tried this on the MNIST (digit image) dataset, and you can find the demo here2. If you want to see a
video of the output image changing when the bottleneck values are adjusted, click here.

4 Further Explorations

That’s it for this challenge. There are other topics that I feel are important but somewhat boring to cover
and that I don’t think I could provide more insight on beyond conventional explanations. Some of these
topics are listed below.
Topics:

• Prevention of Exploding Gradients Through Weight Initialization

• Gradient Descent Optimizers

• Neural Network’s Sus History With Neural Networks in The Brain

2Link is found here: https://anish-lakkapragada.github.io/MNIST LatentSpaceViz/. The autoencoder was actually made
with the SeaLion framework.

4

https://github.com/anish-lakkapragada/MNIST_LatentSpaceViz/
https://github.com/anish-lakkapragada/MNIST_LatentSpaceViz/blob/master/output_2.mp4

	Neural Networks: Beyond Univariate Cases
	Univariate Case
	Multivariate Case
	The Easy Part: Activation Functions
	Putting it Altogether
	Backpropagation: They Needed to Make Something Sound Fancy, again

	Why Neural Networks Became Famous: Universal Approximation Theorem
	Autoencoders: Neural Networks Beyond Prediction
	Further Explorations

