Solutions to “A Brief Introduction to Stochastic Calculus”

These are some solutions I have written to exercises from these popular notes from Columbia Uni-
versity’s IEOR E4706: Foundations of Financial Engineering. 1 personally found the notes very
helpful for picking up introductory stochastic calculus (e.g. Brownian motions, stochastic integrals,
It6’s lemma) with minimal measure theory background.

Please email anish.lakkapragada@yale.edu for any questions or errors.

Exercise 1: Conditional expectations as martingales

Let Z be a random variable and set X; := E[Z | F;]. Show that X; is a martingale.

Leaving aside the first property from Definition 3, we show the second property. Namely
V t,s > 0, we have:

E[Xtys | il = E[E[Z | Fiys] | F]

but F; C Fiis and so by the tower property E[Xyis | Ft] = E[Z | /i) = Xy — X is a
martingale.

Exercise 2: Martingale Property of Stochastic Integrals of an Elementary Process

Check that Yiy(w) := fo Ws(w) is indeed a martingale when X(w) is an elementary
process.

Before showing that Y;(w) is a martingale, we first provide our canonical definition of
elementary process Xi(w) = >, €i(w) 1, 1, ,)(t) where {ex(w)}i_q and {tx};_, are defined
as in Definition 6.

We now check that Y;(w) is a martingale, this time with both properties in Definition 3.
We first start by showing the more interesting second property. Pick ¢, s > 0. We apply
Definition 7:

t+s n—1

Yits(w) = ; Zez MW A t+6) (@) = Wi a (1) (W)]
=0

where® x Ay = min(z, y). We now split this summation based on index j where t; <t <t ;:

7j—1

Yips(w Z ei(w ZH )]+ Z ei(w Wtz+1/\(t+s)( w) — th(t+s) (w)]
i=0

N~

Yi(w)

n—1

= E[Yis(w) | F] = Yi(w )+E[Z (@)W1 atrs) (W) = Win@rs) (@)] | Fi]
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where these expectations are over w € €. To finish, E[W,  ats) (W) — Win@ts)(w)] =

0 = E[Z;:Jl i (W)W n(t45) (W) = Wia(t45)(W)] | Ft] = 0, and so we have demonstrated

the martingale property E[Y;ys(w) | Fi] = Yi(w).

We now show the first property for sake of completeness. We use the fact that |}, A;| <
> i |Ai| where all 4; € R:

n—1

E[|¥2(w |Z€z )(Weipine = W)l = Efles(w)[] x E[|[W,, ne — Wesnel]

@
I
=)

By assumption all |e;(w)| < co. Furthermore, increments in Brownian motion are normally
distributed and so Wy, ar — Wiae ~ N (0,41 At —t; At). For any rv. X ~ N (i, 0?%) we

have E[|X[] = 04/2 = E[Wy,, ne — Wind] = \/%(ti+1 At —t;At). So:

E[|Yi(w \/7 ZE\el Vi At —ti A t) < oo

which concludes our demonstration of the first property.

“This slight adjustment is required as ¢ + s is not necessarily equal to T' = ¢,,. In the case t + s > T, we
consider Wiy as Wr — essentially stopping the Brownian motion.

Exercise 3: Prove Mixture of Independent Brownian Motions is a Brownian Motion

Let Wt(l) and Wt@) be two independent Brownian motions. Use Levy’s Theorem to show that:

Wt —pW +\/ W

is also a Brownian motion for a given constant p.

To use Levy’s Theorem (Theorem 2) to show that W; is a Brownian motion we must show that
V T > 0,W;’s quadratic variation over [0, 7] is equal to 7. We fix constants p € R,T € R™,
and make a partition 0 < t9 < t; < --- < t, = T of our interval [0,7]. Then we can define
the sum of square changes of W; to be Q,(T) := > I, (AW;)? where each (AW;)? is given
by:

(AW;)? = [Wh, — Wi, )2 = [p(WD = WD)+ V1= (WD — w2 =
PA(AWI)2 + (1 = ) AWD)2 + 20y/1 — AW AW

By Levy’s Theorem, because Wt(l) and Wt(z) are Brownian Motions, their quadratic variation
over interval [0, 7] is equal to T". So defining At := max;(t; —t;—1) we have that the quadratic
variation of W, lim Q,(T) = lim Y7 ,(AW;)? is given by®

At—0 At—0
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At—0

lim Qu(T) = p*T + (1= p)*T +2pV/1 = 7 lim >~ AW AW
=1
=T +2p\/1— 2 li AWDOAW P
+2V1= 7 lim ) AWSAW,

So to show that lim Q,(T) =T, we WTS that lim > 7, AWZ-(I)AWZ.(Z) -0
At—=0 At—0

We first begin by defining r.v. S, := > ", AW(I)AW@) Note that because Wt(l) and Wt(Q)
are independent Brownian motions, E[S,| = > , E[AW( )] [AWZ»(Q)] =3 1",0-0=0andso
Var(S,) = E[S2]. We look at this E[S2] below, which will be helpful in establishing S, 5o

E[S2] = ZAW(”AW( = S EawPawPawPaw?)
i=1 4,5€[1,n]
E

Because increments are independent in a Brownian motion Vi # j and Vk € {1,2} we have
E[AWi(k)AWj(k)] S E[AWi(k)]E[AWf] =0-0 = 0. So we can continue simplifying E[S2] more:

=S E[(AW)E(AW?)?] = Y (Ati)? < max Aty x Y At; = max At; x T
= =1 ! =1 !

But then as At = maxAt; — 0 we have E[S?] — 0. By Chebyshev’s Inequality, Ve > 0:
(2

Var(Sy,) _ E[S2]

€

—0asn— o

P(|Sn| > €) <

and so by definition of convergence in probability S, = > 7 AW(l)AW(2) 0. Thus,
Aliman( ) =T = W, is a Brownian motion by Levy’s Theorem.
%

“Please note that At -+ 0 < n — co.
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