
Solutions to “A Brief Introduction to Stochastic Calculus”

These are some solutions I have written to exercises from these popular notes from Columbia Uni-
versity’s IEOR E4706: Foundations of Financial Engineering. I personally found the notes very
helpful for picking up introductory stochastic calculus (e.g. Brownian motions, stochastic integrals,
Itô’s lemma) with minimal measure theory background.

Please email anish.lakkapragada@yale.edu for any questions or errors.

Exercise 1: Conditional expectations as martingales

Let Z be a random variable and set Xt := E[Z | Ft]. Show that Xt is a martingale.

Leaving aside the first property from Definition 3, we show the second property. Namely
∀ t, s ≥ 0, we have:

E[Xt+s | Ft] = E[E[Z | Ft+s] | Ft]

but Ft ⊂ Ft+s and so by the tower property E[Xt+s | Ft] = E[Z | Ft] = Xt =⇒ Xt is a
martingale.

Exercise 2: Martingale Property of Stochastic Integrals of an Elementary Process

Check that Yt(ω) :=
´ t
0 Xs(ω)dWs(ω) is indeed a martingale when Xt(ω) is an elementary

process.

Before showing that Yt(ω) is a martingale, we first provide our canonical definition of
elementary process Xt(ω) :=

∑
i ei(ω)I[ti,ti+1)(t) where {ek(ω)}nk=0 and {tk}nk=0 are defined

as in Definition 6.

We now check that Yt(ω) is a martingale, this time with both properties in Definition 3.
We first start by showing the more interesting second property. Pick t, s ≥ 0. We apply
Definition 7:

Yt+s(ω) =

ˆ t+s

0
Xs(ω)dWs(ω) =

n−1∑
i=0

ei(ω)[Wti+1∧(t+s)(ω)−Wti∧(t+s)(ω)]

wherea x∧y = min(x, y). We now split this summation based on index j where tj ≤ t ≤ tj+1:

Yt+s(ω) =

j−1∑
i=0

ei(ω)[Wti+1(ω)−Wti(ω)]︸ ︷︷ ︸
Yt(ω)

+

n−1∑
i=j

ei(ω)[Wti+1∧(t+s)(ω)−Wti∧(t+s)(ω)]

=⇒ E[Yt+s(ω) | Ft] = Yt(ω) + E[
n−1∑
i=j

ei(ω)[Wti+1∧(t+s)(ω)−Wti∧(t+s)(ω)] | Ft]
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where these expectations are over ω ∈ Ω. To finish, E[Wti+1∧(t+s)(ω) − Wti∧(t+s)(ω)] =

0 =⇒ E[
∑n−1

i=j ei(ω)[Wti+1∧(t+s)(ω) −Wti∧(t+s)(ω)] | Ft] = 0, and so we have demonstrated
the martingale property E[Yt+s(ω) | Ft] = Yt(ω).

We now show the first property for sake of completeness. We use the fact that |
∑

iAi| ≤∑
i |Ai| where all Ai ∈ R:

E[|Yt(ω)|] = E[|
n∑

i=0

ei(ω)(Wti+1∧t −Wti∧t)|] ≤
n−1∑
i=0

E[|ei(ω)|]× E[|Wti+1∧t −Wti∧t|]

By assumption all |ei(ω)| < ∞. Furthermore, increments in Brownian motion are normally
distributed and so Wti+1∧t −Wti∧t ∼ N (0, ti+1 ∧ t − ti ∧ t). For any r.v. X ∼ N (µ, σ2) we

have E[|X|] = σ
√

2
π =⇒ E[Wti+1∧t −Wti∧t] =

√
2
π (ti+1 ∧ t− ti ∧ t). So:

E[|Yt(ω)|] ≤
√

2

π
·
n−1∑
i=0

E[|ei(ω)|]
√
(ti+1 ∧ t− ti ∧ t) < ∞

which concludes our demonstration of the first property.

aThis slight adjustment is required as t + s is not necessarily equal to T = tn. In the case t + s > T , we
consider Wt+s as WT – essentially stopping the Brownian motion.

Exercise 3: Prove Mixture of Independent Brownian Motions is a Brownian Motion

Let W
(1)
t and W

(2)
t be two independent Brownian motions. Use Levy’s Theorem to show that:

Wt := ρW
(1)
t +

√
1− ρ2 W

(2)
t

is also a Brownian motion for a given constant ρ.

To use Levy’s Theorem (Theorem 2) to show thatWt is a Brownian motion we must show that
∀ T > 0,Wt’s quadratic variation over [0, T ] is equal to T . We fix constants ρ ∈ R, T ∈ R+,
and make a partition 0 < t0 < t1 < · · · < tn = T of our interval [0, T ]. Then we can define
the sum of square changes of Wt to be Qn(T ) :=

∑n
i=1(∆Wi)

2 where each (∆Wi)
2 is given

by:

(∆Wi)
2 = [Wti −Wti−1 ]

2 = [ρ(W
(1)
ti

−W
(1)
ti−1

) +
√

1− ρ2(W
(2)
ti

−W
(2)
ti−1

)]2 =

ρ2(∆W
(1)
i )2 + (1− ρ2)(∆W

(2)
i )2 + 2ρ

√
1− ρ2∆W

(1)
i ∆W

(2)
i

By Levy’s Theorem, because W
(1)
t and W

(2)
t are Brownian Motions, their quadratic variation

over interval [0, T ] is equal to T . So defining ∆t := maxi(ti− ti−1) we have that the quadratic
variation of Wt, lim

∆t→0
Qn(T ) = lim

∆t→0

∑n
i=1(∆Wi)

2 is given bya:
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lim
∆t→0

Qn(T ) = ρ2T + (1− ρ)2T + 2ρ
√

1− ρ2 lim
∆t→0

n∑
i=1

∆W
(1)
i ∆W

(2)
i

= T + 2ρ
√
1− ρ2 lim

∆t→0

n∑
i=1

∆W
(1)
i ∆W

(2)
i

So to show that lim
∆t→0

Qn(T ) = T , we WTS that lim
∆t→0

∑n
i=1∆W

(1)
i ∆W

(2)
i = 0.

We first begin by defining r.v. Sn :=
∑n

i=1∆W
(1)
i ∆W

(2)
i . Note that because W

(1)
t and W

(2)
t

are independent Brownian motions, E[Sn] =
∑n

i=1 E[∆W
(1)
i ]E[∆W

(2)
i ] =

∑n
i=1 0·0 = 0 and so

Var(Sn) = E[S2
n]. We look at this E[S2

n] below, which will be helpful in establishing Sn
P→ 0:

E[S2
n] = E[(

n∑
i=1

∆W
(1)
i ∆W

(2)
i )2] =

n∑
i,j∈[1,n]

E[∆W
(1)
i ∆W

(2)
i ∆W

(1)
j ∆W

(2)
j ]

=
n∑

i,j∈[1,n]

E[∆W
(1)
i ∆W

(1)
j ]E[∆W

(2)
i ∆W

(2)
j ]

Because increments are independent in a Brownian motion ∀i ̸= j and ∀k ∈ {1, 2} we have

E[∆W
(k)
i ∆W

(k)
j ] = E[∆W

(k)
i ]E[∆W k

j ] = 0 ·0 = 0. So we can continue simplifying E[S2
n] more:

E[S2
n] =

n∑
i=1

E[(∆W
(1)
i )2]E[(∆W

(2)
i )2] =

n∑
i=1

(∆ti)
2 ≤ max

i
∆ti ×

n∑
i=1

∆ti = max
i

∆ti × T

But then as ∆t = max
i

∆ti → 0 we have E[S2
n] → 0. By Chebyshev’s Inequality, ∀ϵ > 0:

P(|Sn| > ϵ) ≤ Var(Sn)

ϵ
=

E[S2
n]

ϵ
→ 0 as n → ∞

and so by definition of convergence in probability Sn =
∑n

i=1∆W
(1)
i ∆W

(2)
i

P→ 0. Thus,
lim
∆t→0

Qn(T ) = T =⇒ Wt is a Brownian motion by Levy’s Theorem.

aPlease note that ∆t → 0 ⇐⇒ n → ∞.
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