
EECS 126: Probability & Random Processes Spring 2025

Reversible Markov Chains & Poisson Processes

1 Reversible Markov Chains

As a recap from last time on Reversible Markov Chains, remember that we have the following
properties:

1. irreducible, positive recurrent Markov Chain (MC) started at stationary distribution π

2. If (x0, x1, . . . xn) and (xn, . . . , x0) have the same joint PMF =⇒ chain is “reversible”

We now present two important facts, each with their proofs:

1. An MC summed backward is always an MC

Pf : Consider the following representation of a future MC, where we compute the probability
of a state in the present given the future events:

P (Xk = i︸ ︷︷ ︸
present

|Xk+1 = j,Xk+2 = ik+2, . . . , Xn = in︸ ︷︷ ︸
future

) =
P (Xk = i,Xk+1 = j,Xk+2 = ik+2, . . . , Xn = in)

P (Xk+1 = j,Xk+2 = ik+2, . . . , Xn = in)

by basic conditional probability. Given our MC is starting at stationary distribution π we
can re-express this probability as:

π(i)PijPj,ik+2
Pik+2,ik+3

. . . Pin−1 , in

π(j)Pj,ik+2
Pik+2,ik+3

. . . Pin−1,in

=
π(i)Pij

π(j)

Since P (Xk|Xk+1, Xk+2, . . . , Xn) depends only on P (Xk|Xk+1) we have an MC! We can give
the transition probability for the backward chain as:

P̃ji =
π(i)Pij

π(j)

From this we arrive easily at our next proof.

2. If a Backward MC is the same as its Forward MC, the MC is time-reversable

Pf : If a Backward MC is the same as its Forward MC =⇒ P̃ji = Pji =
π(i)Pij

π(j) =⇒ π(i)Pij =

π(j)Pji. This means that the MC is time-reversable; the process appears the same regardless
of which direction of time we are looking at. Note that π(i)Pij = π(j)Pji is known as the
Detailed Balance Equation (DBE). As a cool demonstration, we will briefly derive the Global
Balanced Equation (GBE) from the DBE:
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π(i)Pij = π(j)Pji

Σi∈Xπ(i)Pij = Σi∈Xπ(j)Pji

Σi∈Xπ(i)Pij = π(j)Σi∈XPji

Note Σi∈XPji = 1 and so Σiπ(i)Pij = π(j), which is the GBE. Expressed in matrix form, this
means πP = π, which re-affirms that π is the stationary distribution of our MC.

We conclude this section with one last fact about MC.
Fact: Consider a graph associated with an irreducible, positive recurrent Markov chain. Construct
a new graph by:

• Removing the direction of all edges in the original directed graph.

• Removing multiple edges between any pair of nodes.

• Removing all self-loops.

If the resulting undirected graph forms a tree (i.e., it contains no cycles), then the stationary
distribution satisfies the DBE. Pf : Homework.

2 Introduction to Poisson Processes

We now shift our focus from Markov Chains to Poisson Processes. We start by defining what a
Poisson Process (PP) is:

Definition 2.1. A Poisson Process (PP) is the continuous-time analog of a “coin-flipping”
process in the Bernoulli theorem. It serves as a fundamental model for arrival processes, such as:
photons hitting a detector, packets arriving in a network, the number of accidents per day, the
number of emails received per day, etc.
Let us define Ti as the time at which the ith event occurs, and Si as the time between Ti−1 to Ti

(we set S1 = T1). In our PP model, S1, S2, . . . , Sn
I.I.D.∼ Expo(λ) so our PDF for Si is given by

fSi(t) = λe−λt for t > 0.

Let us think more critically about a few things. First, note that Tn, the arrival time of the nth event,
can be given as the sum of these times between events (a.k.a interarrival times): Tn = Σn

i=1Si.
Furthermore, if we are curious in the number of events occured by time t, denoted by Nt, we can
use the following cumbersome definition:

Nt =

max
n≥1

({n|Tn ≤ t}) if t ≥ T1

0 else

Before concluding our introduction to PPs for today, we try to arrive at two foundational conclu-
sions. Before doing so, we recall some properties of Exponential distributions. Let r.v. τ ∼ Expo(λ).
Then:
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1. Our CDF of τ is given by:

Fτ (t) =

{
1− e−λt if t ≥ 0

0 else

2. E[τ ] = 1
λ and Var(τ) = 1

λ2

3. Memoryless property: P (τ > t+ s|τ > s) = P (τ > t)

4. P (τ ≤ t+ ϵ|τ > t) = λϵ+ o(ϵ) where o(ϵ) is “little-o” notation1 (Direct consequence of #3)

We are specifically interested in the Memoryless property, which has the following major implication
(which we will unfortunately not prove).

Theorem 2.2. Let tn+1 ≥ tn ≥ 0 be any two times in a Poisson Process. The difference Ntn+1 −
Ntn is independent of all other increments and has the same probabilty distribution as any other
difference Nj −Ni where j− i = tn+1− tn and j ≥ i ≥ 0. In other words, any segment of a Poisson
Process is I.I.D. distributed to any other equal-length segment of the same Poisson Process.

Finally, you may wonder why Poisson Process has the “Poisson” in its name. We address this with
our final theorem which we will show next time:

Theorem 2.3. Let N = {Nt, t ≥ 0} be a Poisson process with rate λ. Then the number of arrivals
Nt in the interval (0, t) follows a Poisson distribution:

P (Nt = k) = e−λt (λt)
k

k!
,

which implies that Nt ∼ Pois(λt).

1o(ϵ) refers to any function that grows at a rate less than ϵ (namely lim
ϵ→0

o(ϵ)
ϵ

= 0). One such function would be ϵ2;

this notation is used widely to address higher-order terms that vanish faster than ϵ
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