
Solutions to Cornell/Bard “Introduction to the Lebesgue Integral” Notes

These are some solutions I have written to exercises from these notes from Cornell University /
Bard College’s course on measure theory taught by Dr. Jim Belk. I found the notes and exercises
to be very helpful.

Please email anish.lakkapragada@yale.edu for any questions or errors. Please note for the fol-
lowing exercises that (X,M, µ) is the assumed measure space.

Exercise 1

Prove that if f is a measurable function on X, then the set

f−1(∞) = {x ∈ X | f(x) = ∞}

is measurable.

Observe

f−1(∞) =
⋂
a∈N

f−1((a,∞])

where each set in the intersection is measurable.

Exercise 2

Let f and g be measurable functions on X, and suppose that f + g is everywhere defined.
Prove directly from definition that f + g is measurable.

Let us define h := f + g. We will take advantage of the fact that Q is countable:

∀a ∈ R, h−1((a,∞]) = {x ∈ X | f(x) + g(x) > a} =
⋃
q∈Q

f−1((q,∞]) ∪ g−1((a− q,∞])

Because both f−1((q,∞]) and g−1((a−q,∞]) are measurable =⇒ h−1((a,∞]) is measurable
by a countable union =⇒ h is a measurable function.

Exercise 3

Let f : X → [−∞,∞] be a measurable function. Prove directly from the definition that −f
is measurable.

Define g := −f , then:

∀a ∈ R, g−1((a,∞]) = f−1([−∞,−a)) =
(
f−1([a,∞])

)c
=

( ⋂
n∈N

f−1((a− 1

n
,∞])

)c
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Exercise 4

Prove that if S ⊆ X, then χS is a measurable function if and only if S is a measurable set.

Note the following:

∀a ∈ R, χ−1
s ((a,∞]) =


∅ if a ≥ 1

S if 0 ≤ a < 1

X if a < 0

∅ and X are measurable. So χ−1
s ((a,∞]) is measurable ⇐⇒ S is measurable.

Exercise 5

Let f and g be measurable functions on X, and let E ⊆ X be a measurable set, and define a
function h : X → [−∞,∞] by

h(x) =

{
f(x) if x ∈ E

g(x) if x ∈ Ec

Prove that h is measurable.

Note that Ec is also measurable. As shown in the notes, fχE is measurable, and thus so is
gχEc . So by Exercise 2 we have that h = fχE + gχEc is measurable.

Exercise 6

Let f be a Lebesgue integrable function on X. Use the positive and negative parts of f to
prove that ∣∣∣∣ˆ

X
f dµ

∣∣∣∣ ≤ ˆ
X
|f | dµ.

Observe that because |f | = f+ + f−, have:∣∣∣∣ˆ
X
f dµ

∣∣∣∣ = ∣∣∣∣ˆ
X
f+dµ−

ˆ
X
f−dµ

∣∣∣∣ ≤ ˆ
X
f+dµ+

ˆ
X
f−dµ =

ˆ
X
|f |dµ

This is a simple example of ∀a, b ∈ R, |a− b| ≤ |a|+ |b|.

Exercise 7

Let f be a non-negative measurable function on X and suppose that f ≤ M for some constant
M . Prove that ˆ

E
fdµ ≤ Mµ(E)

for any measurable set E.
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Define function g : X → [−∞,∞] where g(x) = M . The main part of this question is proving
that g is Lebesgue integrable. To start, we first show it is measurable:

∀a ∈ R, g−1((a,∞]) =

{
∅ if a ≥ M

X if a < M

Furthermore, note that either g+ or g− is equal to the zero function (e.g. if M ≥ 0 =⇒
g− = 0) and so either

´
X g+dµ < ∞ or

´
X g−dµ < ∞. So g is Lebesgue integrable. Then

note that fχE ≤ gχE , so we have:

ˆ
E
fdµ =

ˆ
X
fχEdµ ≤

ˆ
X
gχEdµ =

ˆ
X
MχEdµ = Mµ(E)

Exercise 8

Prove that if f : X → [−∞,∞] is Lebesgue integrable on X, then fχE is Lebesgue integrable
for every measurable set E ⊂ X, and hence all of the integrals

ˆ
E
fdµ

are defined.

Because the notes have already shown that fχE is a measurable function, the only task for
us is to show that either of the two cases holds:

ˆ
X
(fχE)

+dµ < ∞ or

ˆ
X
(fχE)

−dµ < ∞

Because f is Lebesgue integrable, WLOG let us assume that
´
X f+dµ < ∞. Note that

(fχE)
+ ≤ f+ and so:

ˆ
X
(fχE)

+dµ ≤
ˆ
X
f+dµ < ∞

and so we are finished.

Exercise 9

Prove that if “f = g almost everywhere” is an equivalence relation for measurable functions
on X.

The reflexive and symmetric properties of this equivalence relation are trivial to show. We
thus only show the transitivity property of this equivalence relation. Suppose f, g, h are all
measurable functions on X and we have “f = g almost everywhere” and “g = h almost
everywhere”. Then we have measure zero sets A and B such that ∀x ∈ X − A, f(x) = g(x)
and similarly ∀x ∈ X − B, g(x) = h(x). Defining measure-zero seta C := A ∪ B, we have
∀x ∈ X − C = (X −A) ∩ (X −B), f(x) = g(x) = h(x). So we are finished.

aNote that µ(C) = µ(A)+µ(B)−µ(A∩B) = 0−µ(A∩B). But µ(A∩B) ≤ µ(A) = 0 =⇒ µ(A∩B) = 0.

3



Exercise 10

Let f : X → [−∞,∞] be a Lebesgue integrable function, and let E,F ⊆ X be disjoint
measurable sets. Prove that ˆ

E∪F
fdµ =

ˆ
E
fdµ+

ˆ
F
fdµ

Note that because E and F are disjoint, fχE∪F = fχE + fχF . Then we have:

ˆ
E∪F

fdµ =

ˆ
X
fχE∪Fdµ =

ˆ
X
fχEdµ+

ˆ
X
fχFdµ =

ˆ
E
fdµ+

ˆ
F
fdµ

Exercise 11

Let {fn} be a sequence of non-negative measurable functions on X. Prove that
∑

n∈N fn is
measurable, and that

ˆ
X

∑
n∈N

fndµ =
∑
n∈N

ˆ
X
fndµ

We define the partial sums of these functions by gn =
∑n

i=1 fi. Note that {gn} is a sequence
of increasing measurable functions on X where gn ↑

∑
n∈N fn as each fn ≥ 0 (so

∑
n∈N fn is

not an alternating series.) Then by Lebesgue’s Monotone Convergence Theorem we have:

lim
n→∞

ˆ
X
gn dµ =

ˆ
X

lim
n→∞

gndµ =

ˆ
X

∑
n∈N

fndµ

But

lim
n→∞

ˆ
X
gn dµ = lim

n→∞

ˆ
X
(

n∑
i=1

fi)dµ = lim
n→∞

n∑
i=1

ˆ
X
fidµ =

∑
n∈N

ˆ
X
fndµ

where the last limit is established because each
´
X fidµ ≥ 0.

Exercise 12

Let f : X → [0,∞) be a measurable function, let {En} be a sequence of pairwise disjoint,
measurable subsets of X, and let E =

⊎
n∈NEn. Prove that

ˆ
E
fdµ =

∑
n∈N

ˆ
En

fdµ

Hint: See previous exercise. We can define our sequence {fn} of non-negative measurable
functions on X as {fχEn}. Then f =

∑
n∈N fn and each

´
X fndµ =

´
X fχEndµ =

´
En

fdµ.
Using the previous exercise, we are finished.
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Exercise 13

Prove that

lim
n→∞

ˆ 1

0
xndx = 0.

This question can be solved with an application of Lebesgue’s Dominated Convergence The-
orem. To do so rigorously, we define our (Lebesgue) measure space ([0, 1],M|[0,1],m|[0,1])
where M is the Lebesgue measurable sets. Let us define our pointwise convergent sequence
{fn} of measurable functions on [0, 1] to be {xn} (note that ∀x ∈ [0, 1], xn → 0 as n → ∞).
We define continuous and measurablea constant function g : [0, 1] → [0,∞] as g(x) = 1. Then
note that:

ˆ
[0,1]

g dm =

ˆ 1

0
1dx = 1 < ∞

and also that ∀n, |fn| = |xn| ≤ 1. So by applying Lebesgue’s Dominated Convergence Theo-
rem, we have:

lim
n→∞

ˆ
[0,1]

xndm =

ˆ
[0,1]

lim
n→∞

xndm =

ˆ
[0,1]

0 dm = 0

But because each fn = xn is continuous,
´
[0,1] x

ndm =
´ 1
0 xndx and so:

lim
n→∞

ˆ
[0,1]

xndm = lim
n→∞

ˆ 1

0
xndx

Thus we are finished.

aSee Exercise 7 for justification.

Exercise 14

Prove that

lim
n→∞

ˆ 1

0
tan−1(nx)dx =

π

2

Hint: See answer to last exercise. We use the same measure space as in the last exercise
and define our pointwise convergent sequence {fn} of measurable functions on [0, 1] to be
{tan−1(nx)} (note that ∀x ∈ [0, 1], tan−1(nx) → π

2 ). We define continuous and measurable
constant function g : [0, 1] → [0,∞] as g(x) = 2 where:

ˆ
[0,1]

g dm =

ˆ 1

0
2dx = 2 < ∞

and ∀n, |fn| = | tan−1(nx)| ≤ 2. So by Lebesgue’s Dominated Convergence Theorem and the
fact that each fn = tan−1(nx) is continuous we have:
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lim
n→∞

ˆ 1

0
tan−1(nx)dx = lim

n→∞

ˆ
[0,1]

tan−1(nx) dm =

ˆ
[0,1]

lim
n→∞

tan−1(nx) dm =

ˆ 1

0

π

2
dx =

π

2
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