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Chapter 1

PAC Learning and VC Theory

1.1 Course Logistics (Lecture 1)

We start the class by introducing our names & majors before getting into objectives of this course. Omar
also covers the syllabus (recommended prerequisites, grading, and AI policy) before going over a roadmap
of the things we will cover. Okay, let’s start!

1.2 Introducing the Statistical Learning Theory Framework (Lec-
ture 1)

We now introduce the statistical learning theory framework where we have the following objects:

• Domain X (e.g. X = Rd) where each x ∈ X is called an “instance”

• Label Space Y (e.g. Y = {±1} or Y = R)

• Unknown source distribution D over X × Y . This is an assumption on the data generating process
(formed by “nature” or “reality”).

• Goal: find a predictor h : X → Y achieving small expected error LD(h) := P(x,y)∼D{h(x) ̸= y}.

• Access to an oracle: We have an i.i.d training sample S = {(xi, yi)}mi=1 drawn from D (notated by
S ∼ Dm)

Restated, our goal is to create some learner A : (X × Y )⋆ → Y X , where the ⋆ denotes a variable-length
sequence of X × Y (i.e. our dataset) and Y X is the set of all functions mapping from X to Y .

Omar notes that we will first start by assuming that any instance x ∈ X has a “ground-truth” label, as
opposed to a case where D allows for 50% probability mass on (x,+1) and (x,−1) (such a case could happen
to to reflect uncertainty in the label of x). More generally, we will start with these strong assumptions in
the bulleted list above and relax them later.

It’s worth emphasizing two main assumptions about our data within this framework:

• We observe i.i.d training samples from (unknown) distribution D.

• Future (unseen) examples are drawn from the same distribution D.

The second point is easier to forget.
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Expected vs. Empirical Error. Let’s look a bit more closely at our objective: minimizing our expected
error

LD(h) := P(x,y)∼D{h(x) ̸= y} (1.1)

Why not minimize this directly? Answer: we don’t assume access to the data distribution D. Hence,
given some sample S we use the empirical error :

LS(h) =
1

m

m∑
i=1

1{h(xi) ̸= yi} (1.2)

as our proxy to D. While this is a typical setup in machine learning, it leads to the following questions:

• How should we use the empirical error?

• Is it a good estimate for the expected error? And how good?

Specifically, we are interested in their difference:

|LD(h)− LS(h)| = |P(x,y)∼D{h(x) ̸= y} − 1

m

m∑
i=1

1{h(xi) ̸= yi}| (1.3)

Please recognize that the empirical error LS(h) is a random variable as it is a function of the randomly
drawn dataset S ∼ Dm whereas LD(h) is just a population statistic. The relationship between the two
should be more clear from the below quick exercise:

∀ h : X → {±1} with D over X × {±1}, show that ES∼Dm [LS(h)] = LD(h) (1.4)

But this is not a useful fact as its an asymptotic, and we are more interested in the difference in the case
of a finite dataset size m. Thus, we often use tools like concentration inequalities (e.g. Hoeffding’s) to create
bounds like the below for some fixed h and m:

PS∼Dm [|LS(h)− LD(h)| > ϵ] ≤ 2 exp(−2ϵ2m) (1.5)

Or restated equivalently (i.e. define δ := 2 exp(−2ϵ2m) and “invert” the probabilities),

PS∼Dm [|LS(h)− LD(h)| ≤
√

ln(2/δ)

2m
] ≥ 1− δ (1.6)

From this expression it should be clear that as m → ∞, our expected difference between expected and
empirical error goes to zero.

1.3 Consistent Learning Rule Bound for Finite Hypothesis Class
(Lecture 1)

Before actually creating another bound ourselves, we structure our problem even more with some prior
knowledge/decisions we make:

• We restrict ourselves to a subset of functions from X to Y called our hypothesis class H ⊆ Y X .
Examples of H are given below:

– Linear Predictors

– Support Vector Machines (SVMs)

– Neural Networks

2

https://en.wikipedia.org/wiki/Hoeffding%27s_inequality


H will represent our “prior knowledge” or “expert knowledge”. For example, if our domain X is a set
of images we would likely consider using a convolutional neural network (CNN) as our H as CNNs
perform well on this kind of data.

• Assume some true function y = f⋆(x) where f∗ ∈ H. Our learner A will know H but not f⋆ (it will
have to learn this function!).

• As an implication of the above assumption, we will say a sequence ((xi, yi))
m
i=1 is realizable by H if the

true function f⋆ ∈ H gives matching ground truth predictions1

Having established these assumptions, we are now ready to put them to use by creating our own bound!

Warm-up: Finite Classes. Consider the following assumptions:

• H is finite

• D is realizable by H (i.e. ∃ f⋆ ∈ H s.t. LD(f⋆) = P(x,y)∼D[f⋆(x) ̸= y] = 0)

Note that, as stated before, we cannot minimize min
h∈H

LD(h) directly and instead must work on our sample

S ∼ Dm. We present the following definition:

Definition 1.1. We have a consistent learning rule (CLR) when for any input S = {(xi, yi)}mi=1, we can
output any h ∈ H s.t. ∀1≤i≤m, h(xi) = yi.

Then, we have the following question. If ĥ := CLRH(S) for some consistent learning rule CLRH on

hypothesis class H, what can we say about LS(ĥ)? It should be zero, but does this imply that LD(ĥ) = 0?
Here’s a closely-related example: consider some h where LD(h) = 1

2 . This is a bad function that is
correctly 50% of the time in truth. But PS∼Dm [LS(h) = 0] > 0 ̸= 0, meaning ∃ S s.t. LS(h) = 0 (i.e. we can
be fooled to think h is good on some sample S.) Thus, we now create a bound for a finite hypothesis
class to control LD(h) on some CLR-learned h.

Derivation of CLR bound for finite hypothesis class. Fix any function h ∈ H. We define ϵ s.t.
LD(h) > ϵ. We proceed with the following steps:

• We first can find the probability of the bad event (LS(h) = 0) below: 2:

PS∼Dm [LS(h) = 0] =
∏m

i=1 PS∼Dm{h(xi) = yi} =
∏m

i=1(1− LD(h)) ≤ (1− ϵ)m ≤ exp(−ϵm)

• But this is just one bad function ∈ H! We can a group of bad functions with Bϵ := {h ∈ H : LD(h) >
ϵ} ⊂ H. Then to get the probability that any CLR-learned function is “bad” we can use a union
bound :

PS∼Dm

[
CLRH(S) ∈ Bϵ

]
≤ PS∼Dm

[
∃h ∈ Bϵ : LS(h) = 0

]
(1.7)

≤
∑
h∈Bϵ

PS∼Dm

[
LS(h) = 0

]
≤ |Bϵ| e−mϵ ≤ |H| e−mϵ. (1.8)

• We can then set δ := |H| exp(−mϵ) and invert the expression to arrive at Theorem 1.2. So to ensure
CLRH(S) /∈ Bϵ ⇐⇒ CLRH(S) ≤ ϵ with probability ≥ 1 − δ for some predecided δ ∈ (0, 1), we will

need m(ϵ, δ) = ln |H|+ln(1/δ)
ϵ many samples3.

1Mathematically speaking, this means ∀xi, f
⋆(xi) = yi =⇒ LS(f

⋆) = 0. This realizability assumption is non-trivial and
we will discuss it further in the course.

2The last argument here is done using Bernoulli’s Inequality.
3To get this expression, solve for m in terms of δ.
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Pat yourself on the back! We resummarize this bound in the following theorem:

Theorem 1.2 (CLR Bound with (ϵ, δ) fixed). For any finite class H, any (realizable) distribution D, any

(ϵ, δ) ∈ (0, 1)2, with m = ln |H|+ln(1/δ)
ϵ , we have:

PS∼Dm [LD(CLRH(S)) ≤ ϵ] ≥ 1− δ (1.9)

Choosing to take the perspective that our number of samples m is fixed and so we are interested in the
lowest possible error we can achieve w.h.p, we can use the following theorem:

Theorem 1.3 (CLR Bound with m fixed). For any finite class H, any (realizable) distribution D, any
δ ∈ (0, 1),m ∈ N:

PS∼Dm [LD(CLRH(S)) ≤ ln |H|+ ln(1/δ)

m
] ≥ 1− δ (1.10)

This constitutes the first learning guarantee that we have derived. Note that in our derivation we did
not pay much attention to the implementation or procedure of the CLR, which will depend on H. We also
used the realizability assumption, which has some implications:

• What if there is no predictor h ∈ H s.t. LD(h) = 0?

• In such a case, can we use with minh∈H LD(h)?

In response to the second point, we will soon look at empirical risk minimization where:

ERMH(S) = argmin
h∈H

1

|S|
∑

(x,y)∈S

1{h(xi) ̸= yi} (1.11)

So given some function ĥ := ERMH(S), you might be wondering if it will satisfy our Hoeffding bound:

PS∼Dm [|LS(ĥ)− LD(ĥ)| ≤
√

ln(2/δ)

2m
] ≥ 1− δ (1.12)

The answer is no. This is because that bound operates on a fixed h seen a priori before our sampled
data, whereas ĥ is a function of the data (e.g. ĥ is a random variable) and so the inequality does not apply.

Note on Overfitting. Furthermore, while the set of cases where |LS(h) − LD(H)| >
√

ln(2/δ)
2m may only

have δ probability w.r.t. S ∼ Dm, they all add up and so given many {hi}Ki=1 ⊂ H,PS∼Dm [∃ i s.t. |LD(hi)−
LS(hi)| is large] is not small. Thus, we want a stronger guarantee that w.h.p all empirical errors LS(h) are
close to their expected errors LD(h):

PS∼Dm [∀h ∈ H : |LS(h)− LD(h)| > ϵ] ≤ . . . (1.13)

This is known as uniform convergence.

1.4 Uniform Convergence & the Probably Approximately Correct
(PAC) Framework (Lecture 2)

We start by giving our first attempt at a uniform convergence bound:

Theorem 1.4 (Hoeffding-derived Uniform Convergence Bound for finite H). For a finite hypothesis class
|H| < ∞, we have the following uniform convergence bound from the a priori Hoeffding bound:

PS∼Dm [∃h ∈ H : |LD(h)− LS(h)| > ϵ] ≤ |H| · PS∼Dm [|LD(h)− LS(h)| > ϵ] = 2|H| exp(−2ϵ2m) (1.14)
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Defining δ := 2|H| exp(−2ϵ2m) and solving for m, we arrive at the data-form of this bound:

Theorem 1.5 (Theorem 1.5 for fixed (ϵ, δ)). For any finite hypothesis clas |H| < ∞, any distribution D,
any (ϵ, δ) ∈ (0, 1)2 we have:

PS∼Dm [∀h ∈ H : |LS(h)− LD(h)| ≤ ϵ] ≥ 1− δ (1.15)

where m(ϵ, δ) = ln |H|+ln(2/δ)
2ϵ2 .

Note here that in contrast to our CLR bound Theorem 1.2, we will require 1
ϵ2 samples as opposed to 1

ϵ .
So removing the realizability assumption means that we will need more samples. Omar notes that we will
explore a relaxed realizability assumption that leads to m = O( 1ϵ ) in our homework.

From these bounds, we can create some ERM-specific bounds:

Theorem 1.6 (ERM “Post-hoc” Guarantee for finite H). For any finite class H, any distribution D, any
δ ∈ (0, 1),m ∈ N, with probability ≥ 1− δ over S ∼ Dm, we have:

LD(ERMH(S)) ≤ LS(ERMH(S)) +

√
ln |H|+ ln(2/δ)

2m

Proof. We can invoke Theorem 1.5 with ϵ =
√

ln |H|+ln(2/δ)
2m to have ≥ 1 − δ probability that ∀h ∈ H :

|LD(h) − LS(h)| ≤ ϵ. But ERMH(S) ∈ H =⇒ LD(ERMH(S)) ≤ LS(ERMH(S)) + ϵ with ≥ 1 − δ
probability. So we are finished.

Theorem 1.7 (ERM “A-Priori” Guarantee for finite H). For any finite class H, any distribution D, any
δ ∈ (0, 1),m ∈ N, with probability ≥ 1− δ over S ∼ Dm,

LD(ERMH(S)) ≤ min
h∈H

LD(h) + 2

√
ln |H|+ ln(2/δ)

2m
(1.16)

Proof. Note that by definition of ERM, ∀ h̃ ∈ H,LS(ERMH(S)) ≤ LS(h̃). Furthermore, ∀ h̃ ∈ H : LS(h̃) ≤
LD(h̃) + ϵ with ≥ 1− δ probability. So with ≥ 1− δ probability we have:

∀ h̃ ∈ H,LD(ERMH(S)) ≤ LS(ERMH(S))︸ ︷︷ ︸
see proof of Theorem 1.6

+ϵ ≤ LS(h̃) + ϵ ≤ LD(h̃) + 2ϵ

We apply minh̃ to both sides of this inequality to arrive at the theorem.

Before moving forward, we point out the following concepts of approximation and estimation error shown
in Theorem 1.7.

• The approximation error minh∈H LD(h) reduces with richer/larger hypothesis classes H

• However, these expanded hypothesis classes will demand more samples in order to maintain the same

estimation error 2
√

ln |H|+ln(2/δ)
2m

We now move onto formally defining Probability Approximately Correct (PAC) learning, which
Omar notes won a Turing Award. We provide the following two definitions:

Definition 1.8 (Realizably-PAC-Learnable Hypothesis Class). A hypothesis class H is realizably-PAC-
learnable if there exists a learning rule A s.t. ∀(ϵ, δ) ∈ (0, 1)2,∃ m(ϵ, δ) ∈ N,∀ distributions D s.t. infh∈H LD(h) =
0,

PS∼Dm(ϵ,δ) [LD(A(S)) ≤ ϵ] ≥ 1− δ
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Note that this type of PAC-learnable hypothesis class is distribution independent, meaning the bound
applies for any data distribution D that is realizable (i.e. infh∈H LD(h) = 0). Dropping the realizability
assumption for H, we provide another PAC definition for a hypothesis class:

Definition 1.9 (Agnostically-PAC-learnable Hypothesis Class). A hypothesis class H is agnostically-PAC-
learnable if there exists a learning rule A such that ∀(ϵ, δ) ∈ (0, 1)2,∃ m(ϵ, δ) ∈ N,∀ distributions D,

PS∼Dm(ϵ,δ){LD(A(S)) ≤ inf
h∈H

LD(h) + ϵ} ≥ 1− δ

Looking at Definition 1.8 and Theorem 1.2, we get the following corollary.

Corollary 1.10 (Finite classesH are realizably-PAC-learnable with CLR.). All finite classes H are realizably-
PAC-learnable using CLR with sample complexity

m(ϵ, δ) =
ln |H|+ ln(1/δ)

ϵ

Similarly looking at Definition 1.9 and Theorem 1.7, we arrive at the following corollary:

Corollary 1.11 (Finite classes H are agnostically-PAC-learnable with ERM). All finite classes H are
agnostically-PAC-learnable using ERM with sample complexity

m(ϵ, δ) = O

(
ln |H|+ ln(1/δ)

ϵ

)
So we have established that all finite hypothesis classes are realizably and agnostically PAC-learnable.

Now what about infinite classes? And can we learn with less samples than log-cardinality (i.e. m(ϵ, δ) ≪
ln |H|)? The answer is yes, and we now begin our study of the legendary VC Dimension.

1.5 Vapnik-Chervonenkis (VC) Dimension (Lecture 2)

We first start by developing some technology of the growth function. For C = (x1, . . . , xm) ∈ Xm, define
the restriction (or projection) of H onto C as:

H|C = {(h(x1), . . . , h(xm)) | h ∈ H}
We can then define the growth function as ΓH(m) = maxC∈Xm |H|C |. We look at a few examples to

understand how this growth function works:

• X = {1, . . . , 100}, H = {±1}X . Then we have ΓH(m) = min(2m, 2100).

• X = {1, . . . , 2100}, H = {1[x ≤ θ] | θ ∈ {1, . . . , 2100}} will have ΓH(m) = min(m+ 1, 2100)

The idea for both these two examples is that when two of the data points are the same (i.e. m > |X|),
they must be labeled identically and so the growth function hits a limit. Moreover, we should observe that
both function classes in these examples have the same cardinality but that the growth function ΓH(m) can
distinguish between them (H is a lot more complex in the first example, and hence has the higher growth
function.) As a teaser for future results, the growth function gives us the following result which we will later
prove:

Theorem 1.12. (Growth Function Data Bound for Realizable Distribution)
For any hypothesis class H, any (realizable) distribution D, any (ϵ, δ) ∈ (0, 1)2 with sample complexity:

m(ϵ, δ) = O

(
ln[Γh(2m)] + ln(1/δ)

ϵ

)
with probability ≥ 1− δ over S ∼ Dm(ϵ,δ) we have that ∀h ∈ H : LS(h) = 0 =⇒ LD(h) ≤ ϵ.

We also have a similar theorem in the case that D is not realizable, where m(ϵ, δ) ∝ 1
ϵ2 . The main thing

to notice here is that we are no longer having our sample complexity m(ϵ, δ) tied to ln |H|. So now we do
not require our bounds to be finite, and can work with infinite function classes!
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Vapnik-Chervonenkis (VC) Dimension. Using the technology we have so far, we are ready to define
the VC dimension. We say C = {x1, . . . , xm} is shattered by H if |H|C | = 2m, i.e. the projection contains
all 2m possible labelings. The VC-dimension of H, denoted by vc(H) is the largest number of points that
can be shattered by H:

vc(H) = max{m ∈ N : ΓH(m) = 2m}

We say vc(H) is infinite if H is infinite4 and ∀m,ΓH(m) = 2m. We now practice in class with a few
examples of the VC Dimension:

• X = {1, . . . , 100}, H = {±1}X .

• X = {1, . . . , 2100}, H = {1[x ≤ θ] | θ ∈ {1, . . . , 2100}}.

• X = R, H = {1[x ≤ θ] | θ ∈ R}.

• X = R, H = {1[a ≤ x ≤ b] | a, b ∈ R}.

• Axis-aligned rectangles5 (in Rd).

Note that in order to show that the vc(H) = k, we must show that we can shatter some set of k points
but no set of k + 1 points.

4If H is finite, vc(H) ≤ log2 |H| as ΓH(m) ≤ |H| (see definition.)
5SPOILER: Answer is four. Any set of five points will have an “interior point” in the convex hull and so you cannot make

all boundary points be class one but the interior point be class zero.
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