
Solutions to Zach Furman’s Singular Learning Theory Exercises

These are a set of solutions I have written to these released exercises on LessWrong from Zach
Furman. I have found them as a great introduction to the field of Singular Learning Theory.

I am newbie to singular learning theory so it is best not to over-index on these solu-
tions. Please email anish.lakkapragada@yale.edu for any questions or errors.

Exercise: 1

a)

I(µ) = −E[
∂2

∂µ2
log p(x | µ)] = −E[

∂2

∂µ2
(− log

(√
2π

)
− (x− µ)2

2
)] = −E[−1] = 1

b) Note that true distribution q(x) = p(x | µ0) =⇒ our true distribution ∼ N (µ0, 1).
Using the formula for the KL divergence between two normals, we get:

KL(q(x) || p(x | µ)) = (µ0 − µ)2

2

c) Note that ∀ϵ > 0,K(µ) < ϵ ⇐⇒ (µ0 − µ)2 < 2ϵ ⇐⇒ µ ∈ (µ0 −
√
2ϵ, µ0 +

√
2ϵ). Thus,

V (ϵ) =

ˆ
{µ|K(µ)<ϵ}

φ(µ)dµ =

ˆ µ0+
√
2ϵ

µ0−
√
2ϵ

dµ = 2
√
2ϵ

d) We compute λ below, choosing a ∈ R/{1}:

λ = lim
ϵ→0

log(V (aϵ)/V (ϵ))

log(a)
= lim

ϵ→0

log
(
2
√
2aϵ

2
√
2ϵ

)
log(a)

= lim
ϵ→0

log
√
a

log a
=

1

2

log a

log a
=

1

2

Exercise: 2

a) Say we have some mean µ ∈ R in an ordinary normal model, then in our cubic model we
can just choose µ1/3.

b) Note that in our cubicly-parameterized normal model we have that E[x] = µ3:

I(µ) = −E[
∂2

∂µ2
log p(x | µ)] = −E[

∂2

∂µ2
(− log

(√
2π

)
− (x− µ3)2

2
)] = −E[6µ(x− µ3)− 9µ4]

= −6µE[x] + 6µ4 + 9µ4 = −6µ4 + 6µ4 + 9µ4 = 9µ4

So the model is singular in the case of µ = 0.

c) The KL divergence between the true distribution q(x) = p(x | µ0) and p(x | µ) can again
be given based on the divergence between two normals:

1

https://www.lesswrong.com/posts/3HYqTAi4kD35G3BzQ/singular-learning-theory-exercises
mailto:anish.lakkapragada@yale.edu
https://statproofbook.github.io/P/norm-kl.html

KL(q(x) || p(x | µ)) = (µ3
0 − µ3)2

2

Then using our improper prior φ(µ) = 1 again:

V (ϵ) =

ˆ
{ µ|K(µ)<ϵ}

φ(µ)dµ =

ˆ (µ3
0+

√
2ϵ)1/3

(µ3
0−

√
2ϵ)1/3

dµ = (µ3
0 +

√
2ϵ)1/3 − (µ3

0 −
√
2ϵ)1/3

Fix a ∈ R/{1}. We now analyze λ in the two cases below:

(i) Singularity Case: µ0 = 0

In this case, V (ϵ) = 2(2ϵ)1/6 so

λ = lim
ϵ→0

log V (aϵ)− log V (ϵ)

log(a)
= lim

ϵ→0

1
6 log(2aϵ)−

1
6 log(2ϵ)

log(a)
=

1

6
lim
ϵ→0

log(a)

log(a)
=

1

6

(ii) Regular Case: µ0 ̸= 0

We can define δ :=
√
2ϵ and f(x) := (µ3

0 + t)1/3 so we have:

V (ϵ) = f(δ)− f(−δ)

For clarity, we first give the derivative of f :

f ′(t) =
1

3
(µ3

0 + t)−2/3

So f ′(0) = 1
3µ

−2
0 . Then because µ0 ̸= 0, we can use identical Taylor Expansions

around t = 0 on both f(δ) and f(−δ) below so only the odd-powered terms remain:

V (ϵ) = f(δ)− f(−δ) ≈ 2f ′(0)δ +O(δ3) =
2

3
µ−2
0

√
2ϵ+O(ϵ3/2)

Note that when ϵ → 0, O(ϵ3/2) can be expressed as o(ϵ1/2). So for any a ∈ R/{1}:

V (aϵ)

V (ϵ)
=

(23µ
−2
0

√
2(aϵ)1/2 + o((aϵ)1/2))

(23µ
−2
0

√
2(ϵ)1/2 + o(ϵ1/2))

=

a1/2 +
o((aϵ)1/2)

2
3µ

−2
0

√
2ϵ1/2︸ ︷︷ ︸

→0

1 +
o(ϵ1/2)

2
3µ

−2
0

√
2ϵ1/2︸ ︷︷ ︸

→0

= a1/2

So λ = limϵ→0
log

V (aϵ)
V (ϵ)

log(a) = 1
2 , as is expected in a regular model.

For the cubicly-parameterized normal model, we can give V (ϵ) = Cϵ1/2+O(ϵ3/2) for some
constant C ∈ R whereas in our normal model in Exercise 1 we simply had V (ϵ) ∝ ϵ1/2.
What this means is that for all the regular cases of models µ0 ̸= 0, the learning coefficient
(12) is identical as the dominating term is ϵ1/2. However, at the singularity µ0 = 0, we

analytically can give V (ϵ) ∝ ϵ1/6 which is a lower learning coefficient.

(d) Omitted.

2

Exercise: 9

1. This should be second nature now:

K(µ) =

ˆ ∞

−∞
p(x | µ0) log

p(x | µ0)

p(x | µ)
=

ˆ ∞

−∞

1√
2π

exp

(
−x2

2

)
[−1

2
x2 +

1

2
(x− µ(µ− 2)2)2]︸ ︷︷ ︸

µ2(µ−2)4

2
−xµ(µ−2)2

This is just an expectation over r.v. X ∼ N (0, 1) so:

K(µ) = E[
µ2(µ− 2)4

2
− xµ(µ− 2)2] =

µ2(µ− 2)4

2

Plotting K(µ), we can see that it has two minimas: µ = 0 and µ = 2, where the latter is
wider.

b) It would be helpful to first read through Exercise 5(c)’s description of the Watanabe’s
normal crossing method to find the learning coefficient. We will apply that here for our
1D KL divergence function K(µ) to find the LLCs at µ∗ = 0 and µ∗ = 2.

(a) Near µ∗ = 0

We are essentially trying to find k ∈ Z where K(µ) ≍ cµ2k for µ near µ∗. Observe
then that:

K(µ) =
µ2(µ− 2)4

2
≈ 8µ2 +O(µ>2)

and so for close values near µ∗ we can give K(µ) ≈ 8µ2k for k = 1 =⇒ the LLC of
µ∗ = 0 can be given as 1

2 .

(b) Near µ∗ = 2

For convenience, we will reparametrize K(µ) with t := µ− 2. Then note that:

K(µ) =
µ2(µ− 2)4

2
=

(t+ 2)2t4

2
≈ 2t4 +O(t>4)

and so the LLC of µ∗ = 2 can be given as 1
4 .

This aligns with our qualitative description of K(µ) in part (a) – the minima in the KL
divergence for µ∗ = 2 is much wider than µ∗ = 0 so it makes sense that the LLC of µ∗ = 2
will be less (as this implies more volume for an arbitrarily close solution.)

c) We now compute the global learning coefficient using the full method we have used before.
First note that for any small ϵ > 0,

{µ : K(µ) < ϵ} ≈ {8µ2 +O(µ>2) < ϵ} ∪ {2t4 +O(t>4) < ϵ}

≈ {µ : |µ| <
√

ϵ

8
} ∪ {µ : |t| < (

ϵ

2
)1/4}

3

Note that the first set is for all the µ close to µ∗ = 0 and the second set is for all µ close
to µ∗ = 2. Recall that using our prior φ(µ) we have V (ϵ) =

´
{µ:K(µ)<ϵ} φ(µ)dµ. Using

our improper prior φ(µ) = 1 we have:

V (ϵ) ≈ 2

√
ϵ

8
+ 2(

ϵ

2
)1/4 =

ϵ1/2√
2
+ 23/4ϵ1/4 =⇒ V (ϵ) ∝ ϵ1/4

The last statement is due to the fact that the dominating term in V (ϵ) is ϵ1/4 as ϵ is
small. So for any a ∈ R/{1}:

λ = lim
ϵ→0

log(V (aϵ)/V (ϵ))

log(a)
= lim

ϵ→0

log[(aϵ)
1/4

ϵ1/4
]

log(a)
=

1

4

So the global learning coefficient is λ = 1
4 , which matches the lower LLC computed at

minimizer µ∗ = 2 in part (b).

d) Watanabe’s free energy asymptotic tells us that as n → ∞, we will arrive at a minimizer
of the KL divergence. However, when training models we are using finite data (n < ∞)
and thus it might happen that we are in simple but less optimal minimas. The LLC
helps us compare these minimas we might encounter throughout training and understand
when a phase transition might occur; the global learning coefficient is useful insofar as
understanding the final result of training.

Exercise: 10

For this question, note that
´

refers to
´∞
−∞. We also define Ln(w) := − 1

n

∑
i log p(Xi | w).

1. We first compute the RHS:

K(w) + S =

ˆ
q(x) log

q(x)

p(x | w)
−
ˆ

q(x) log q(x)dx = −
ˆ

q(x) log p(x | w)dx

and then the LHS:

EDn [Ln(w)] = EDn [−
1

n

∑
i

log p(Xi | w)] = − 1

n

∑
i

EXi∼q(x)[log p(Xi | w)] =

− 1

n

∑
i

ˆ
log p(Xi | w)q(Xi)dXi = −

ˆ
q(x) log p(x | w)dx

and so we are finished.

b) We put the PDF below for convenience:

p(x | µ) = 1√
2π

exp

(
−1

2
(x− µ3)2

)

4

Note that with the true parameter µ0 = 0, p(x | µ0) gives the N (0, 1) PDF. We also
have:

K(µ) =
µ6

2
, S = −E[log[

1√
2π

exp

(
−1

2
χ2
1

)
]] = log

√
2π + E[

1

2
χ2
1] = log

√
2π +

1

2

where χ2
1 is the standard chi-squared distribution with one degree of freedom.

We attach a plot of Ln(µ) and K(µ) + S below for part (i). We can see that as n
increases, Ln(µ) → K(µ) + S.

We move onto part (ii) now. We give plots of exp(−nLn(µ)) and exp(−nK(µ)) below:

5

We can see that as n increases, exp(−nK(µ)) looks more Gaussian around µ = 0. Fur-
thermore, more of the posterior mass (i.e. exp(−nLn(µ))) shifts near µ = 0.

It can be shown that exp(−nK(µ)) drives changes in the posterior away from the prior.
Thus, exp(−nK(µ)) can give us information on the posterior contraction rate.

c) Recall that we are using an improper prior φ(µ) = 1 and so V (ϵ) by:

V (ϵ) =

ˆ
{µ|K(µ)<ϵ}

dµ = (µ3
0 +

√
2ϵ)1/3 − (µ3

0 −
√
2ϵ)1/3 = 2(2ϵ)1/6

If we were to plot log[V (ϵ)] versus ϵ, we would get a 1
6 slope which gives the learning

coefficient λ we derived in 2(c) for the case of µ0 = 0.

d) It is probably helpful to realize that Ln(µ) − minµ Ln(µ) ≈ K(µ) + S − S = K(µ) as
minµ Ln(µ) ≈ S. Below is a log-log plot comparing Vn(ϵ) with ϵ using N = 102 samples:

6

We can see that the theoretical slope λ = 1
6 matches better for larger values of ϵ. For

smaller ϵ, Vn(ϵ) grows faster than ϵ1/6 relation we derived. This means that for smaller
ϵ tolerances, there is actually a larger volume of possible solutions than we expected.

Exercise: 11

Note that because all p(Xi | w) ∈ [0, 1], β is an inverse temperature as increasing β decreases
the strength of the likelihood

∏
i p(Xi | w)β in moving the posterior p(w | Dn). This differs

from increasing n as increasing n will increase the strength of the likelihood in moving the
posterior.

Exercise: 12

a) We provide the free energy Fn(β) below:

Fn(β) = − log

ˆ
(
∏
i

p(Xi | w)β)φ(w)dw = − log p(Dn)

We can think of p(Dn) as a constant that is large when there exists a set of high-likelihood
weights that strongly align with the prior. So lower values of Fn(β) mean that there is
a space of weights with good Bayesian strength, which is ideal compared to having all
weights have low Bayesian strength (i.e. no weights fit our data well). Thus, we should
always be aiming to choose models with lower free energy.

b) We again use the following setup from Question 2:

p(x | µ) = 1√
2π

exp

(
−1

2
(x− µ3)2

)
, µ0 = 0, q(x) = p(x | µ0) ∼ N (0, 1), λ =

1

6

We provide a plot below of a numerically computeda Fn(β = 1) free energy versus its
estimate nβSn + λ log n for n = 102 to n = 106:

7

c) We perform (b) again, this time for µ0 = 0 (recall then that our local learning coefficient
is λ = 1

2):

(d) We repeat (b) again with µ0 = 0.01. Even though this has a formal learning coefficient
of 1

2 , its behavior matches more with the µ0 = 0 case in part (b) than in part (c).

aNote that naively integrating across µ to compute Fn is numerically unstable. I used GPT-5 when generating
code to perform this integration. To view the code and generate the plots displayed in this question, please feel
free to check out this https://gist.github.com/anish-lakkapragada/9f39da7f072e88d98cd56517e0193ce6 I made.

8

